Py SECURITY

Redefining PAM for the modern enterprise

Authz Control Plane
for every user, NHI and
Al agent

Neha Duggal
Chief Product Officer, PO Security

CLOUD SECURITY Innovation
SEGMENT Sandbox

LEADER 2024

B
CYBER
60

Connectivity

Authentication

,Qp Authorization

OO0

20 years ago ...

Vaults
(using static keys)

(network segmentation)

Py SECURITY

>

SDWAN/SASE

IdP
(Okta, Entra ID)

UNSOLVED
(Authz Control Plane)

Managing privileged access was straightforward
Back when infrastructure was static and access was linear

Human users Network boundary

Py SECURITY

Vault-led PAM was built for static infrastructure

@

Environment: Approach: Authentication:
On-prem data centers with static servers, Vaults with stored/rotated static credentials Manual authentication via SSH keys or root
databases and IPs passwords stored in vaults

O =

P @
Authorization: Auditability: Limitations:
Per-system, coarse-grained access, manually Focused on credential activity and session Secret sprawl, operational bottlenecks, poor
scoped and managed recordings for compliance reporting scalability in modern environments

Effective for on-prem, but fragile and slow-moving

Py SECURITY
Bastion-led PAM struggles with ephemeral cloud

@

Environment: Approach: Authentication:
Early cloud adoption and on prem Bastions and proxies that route sessions Static SSH keys, early SSO integrations via
environments, network-based through jump hosts with shared accounts jump hosts

@)

P
Authorization: Trade-offs: Limitations:
Persistent access, coarse-grained roles, Increases friction, reused credentials, fragile Does not enforce fine-grained, just-in-time
limited visibility into actual permissions workflows access or govern cloud-native entitlements

Helped centralize hybrid access but lacks fine-grained cloud controls

Resources

Cloud infrastructure

DEE

Code repositories

BOD

Servers and databases

Cl/cD

¢ U6

Dev tools

CIE3ED

Legacy/on-prem infrastructure

T

PagerDuty

-5

Explosion of access paths

Modern production environments
are diverse, dynamic and expansive

\\\
|
» N -

* oo] oo]
¢//:><ifﬁﬁ%%%

Py SECURITY

Workforce

Developers | Engineers

IT Security and Compliance teams

20 20 2o

Non-humans

Machines
Service accounts, service principals and workload IAM

Al agents

ﬂ

Py SECURITY

Legacy PAM does not extend to today’s reality

No. of Attack
systems surface area
A
Cloud and SaaS
(app layer)
Authorization
7 management
Multi-cloud
(app layer)
Bastions and
Early cloud jump-hosts
(network layer)

On-prem
(network layer)

T T —> No. of identities

Humans Service Other NHIs Agents
accounts

Inherent risk
Any human or non-human with credentials
has standing access to production

Audit blind spots
Shared accounts make it impossible to log
who actually did what

Operational drag
Heavy infrastructure requires significant
engineering effort and adds user friction

Centralizing control for every user, NHI and agent

Sensitive resources

Cloud infrastructure
On-prem infrastructure
Servers (SSH/Sudo)
Containers and repositories
DEVELEH

Ci/cD

Developer tools

Agentic platforms

Custom applications

Py SECURITY

AUTHZ CONTROL PLANE

Just-Enough-Privilege and Just-in-Time Access

B & B8

Human users Workloads Al agents

ACCESS GRAPH

Access paths, patterns, relationships

-G
BRING YOUR OWN IDENTITY

Users, groups, credentials, roles, permissions, entitlements

Py SECURITY

Replace standing privilege
with JIT production access

Govern NHIs with short-lived
credentials and auto rotation

Modernize PAM for
hybrid infrastructure

Simplify audit prep with
session-level replay

Control first-party agents

_ _ o P SECURITY
Getting to Zero Standing Privilege (ZSP)

DISCOVERY POSTURE POLICY ACCESS AUDIT
Continuously surface Prioritize access Establish least- Enforce just-enough Automate session
and map access sensitivity and privilege programs and JIT access at recordings and

paths privilege risk and guardrails runtime monitor for drift

The simplest way to secure access at scale.

Stop managing credentials and start managing privilege P% SECURITY

AUTHZ CONTROL PLANE

Persistent identity, ephemeral access

Shrink your attack surface

Enforce just-enough and
Just-in-Time access,
replacing static credentials
and standing privilege

Remove governance
overhead

)

Provision access to a
user’s IdP-native identity,
removing shared accounts
and manual reconciliation

Simplify operations

Streamline workflows with

APIl-led orchestration,
no added infrastructure to
deploy or manage

| splunk>

a CISCO company

Q Use Case: JIT SSH/Sudo Access

SSH to EC2, k8s (EKS) for 2000+ developers / CS engineers
Fine-grained, just-in-time access controls
Frictionless developer experience

@j Challenges

Okta ASA (bastion-led PAM) limitations:

°

°

Hard to maintain and scale across hybrid environments

Led to standing access with no support for JiT escalations for fine-grained
cloud access

No identity-native provisioning or support for NHIs leading to governance
overhead

Py SECURITY

PO solution

Rip-and-replace of Okta
ASA (bastion-led PAM):

Short-lived, JIT SSH access

|dentity-native provisioning for
users and NHIs

Eliminated standing privileges

Consistent developer
experience with high adoption

Future proof infrastructure,
simple to maintain and deploy

| CNA

Q Use Case: NHI Governance

1000+ projects in GCP; 20k+ service accounts and static keys
Visibility into over-privileged accounts (NHIs) and stale keys
Automate governance and risk remediation at scale

Py SECURITY

PO solution

1000s of hours saved in
governance overhead:

(@) Challenges « Comprehensive visibility and

Native GCP SCC Premium and CNAPP limitations:

°

governance of NHls in GCP

e Eliminated static credentials,
automated secrets rotation

* Replaced GCP's SCC Premium
SKU entirely

Invisible NHI sprawl, 20k service account and static keys, Policy Analyzer was
paywalled, no visibility into GCP access
Lack of NHI governance with developers creating service accounts without
oversight

Manual overhead of homegrown scripts, JIRA tickets, and emails for
remediation and secret rotation didn't scale

Show Identities in /) p0-demo

fH Table

Where () | resource:{type:bucket p0-demo-customer-a}

Rservice account [Recp role binding

3 p0-demo

» 9 firebase-service-account@fire... 7 2 S
» firebase.managementServiceAgent

RDirectory user B ocP role binding

3 p0-demo

» % golden.marmot@p0.de
L9 @p0.dey iam.securityAdmin

@Cloud Storage (Entire service)
g > || storage
Rservice account [Race role binding)
O p0-demo

) 0-security-perimeter-sa@p0-...
L Ty-pert @p iam.securityAdmin

Rservice account [Race role binding

I & p0-demo

» @ p0-security-perimeter-sa@p0-... . = .
iam.securityAdmin

Rservice account [Rocp role binding

& p0-demo

+ 9 service-403826425907@com... g
compute.serviceAgent

Rservice account 6P role binding

3 p0-demo

» @ service-403826425907@cont... g < - -
containerregistry.ServiceAgent

@Cloud Storage Bucket

» | | p0-demo-customer-a

o Graph

o+

Py SECURITY

Py SECURITY

ontact us
sales@pO.dev

mailto:sales@p0.dev

