
Financial-Grade Security, 
Not Just for Banks



Jonas Iggbom
Director of Sales Engineering



Curity Identity Server

Flexible Authentication
Token-based API Security
API Driven User Management

A Unique Combination of IAM and API Management



Complexities of a Digital World
Identities

Applications



Handle Complexity in the Curity Identity Server

Applications

Identities



Finance Medical Sensitive data

Financial Grade API



• PSD2

• Europe's General Data Protection Regulation (GDPR)

• UK Open Banking

• Open Banking Brazil

• Australian Privacy Principles (APP) 

• South Korea's PIPA

• etc.

Financial Grade API



• Mutual Transport Layer Security (mTLS)

• Sender-constrained access tokens

• Pushed Authorization Request (PAR)

• JWT Secured Authorization Response Mode (JARM )

• Client Initiated Back Channel Authentication (CIBA)

• Phantom / Split token

Technologies / Profiles / Patterns



mTLS



Client Server

TLS



ServerClient

mTLS = mutual TLS



Sender-constrained Tokens



Bearer tokens Sender-constrained tokens / 
Proof-of-Possession tokens

Sender-constrained Tokens



Client 2

Client 1

Bearer Tokens

APIAPI
Gateway



Client 2

Client 1

Sender-constrained Tokens

API
Gateway

API



Client

Authorization 
Server

private key

mTLS

mTLS

Sender-constrained Tokens

API
Gateway

API



Pushed Authorization 
Requests (PAR)



• Standard defined in RFC 9126.

• Provides means for confidential and integrity-protected 

authorization requests.

Pushed Authorization Requests



HTTP 400

GET /authorize?client_id=abc&scopes=read%20write

HTTP 302
Location: /cb?code=123

Is that a legitimate client?

Are the parameters OK?

Can these end up in the 
browser logs?

Client Authorization 
Server

Standard OAuth Authorization Requests



POST /authorize/par
Authorization: Basic 0JjQlNCYOtCd0JDQpdCj0Jkh
client_id=abc&scopes=read%20write

request_id: 1234

GET /authorize?request_id=1234

Client Authorization 
Server

Pushed Authorization Requests



• The client is authenticated before the authorization 

request

• Request parameters do not traverse through unsecure 

transport and cannot be tampered with

• Ability to ease on redirect URI restrictions

Pushed Authorization Requests



JWT Secured Authorization 
Response Mode (JARM)



• Draft specification from the OpenID Foundation 

• Protects against attacks on the authorization code 

response

JARM



GET /authorize?client_id=abc&scopes=read%20write…

HTTP 302
Location: https://example.com/cb?code=abcdef&state=1234

Was it issued by the correct 
Authorization Server?

Does this code belong to this 
state?

Client Authorization 
Server

Standard Response



GET /authorize?client_id=abc&scopes=read%20write…

HTTP 302
Location: https://example.com/cb?response=eyJhbGciOiJSUzN…

decode 
& verify

{
iss: https://idsvr.example.com,
code: “abcdef”,
state: “12345”,
…

}

Client Authorization 
Server

JWT Secured Response

https://idsvr.example.com/


• The code response is integrity-protected.

• Response parameters strongly coupled (mitigates 

replay attacks).

• Protection from mix-up attacks (ability to verify iss

claim).

JARM



Client Initiated Back Channel 
Authentication (CIBA)



• OpenID Connect Authentication Flow

• Decoupled authentication

• Relying Party initiates authentication

CIBA



Authorization 
Server

Start 
Authorization

Authorization Request

Authorization Code

Authentication

Code

App

Code for 
Token

Traditional Front-channel Authentication



Authorization 
Server

Authentication Request

Client 
(Consumption Device)

Authentication Device

Authentication

Token

CIBA



Phantom / Split Token



• Reduce data exposure to the client

• PII data

• Token information is for the API, not the client

• Risk of breaking app if relying on specific data in JWT

Phantom / Split Token



Token
Service

opaque

JWT

The Phantom Token Flow

Client API

Service 2

Service 1

API
Gateway



signature

+
head and body
+ hashed signature

The Split Token Flow

Client APIAPI
Gateway

Token
Service

Cache



=

=

The Split Token Flow

Client APIAPI
Gateway

Token
Service

Cache



=

The Split Token Flow

Client APIAPI
Gateway

Token
Service

Cache



=

The Split Token Flow

Client APIAPI
Gateway

Token
Service

Cache



=

The Split Token Flow

Client APIAPI
Gateway

Token
Service

Cache



=

The Split Token Flow

Client APIAPI
Gateway

Token
Service

Cache



• FAPI, for higher security environments, not just banks

• Safeguard against usage of stolen/lost tokens

• Protect request and response using PAR & JARM

• Decoupled user authentication flow (CIBA)

• Prevent confidential data from leaking or being misused

Summary



Thank You!

curity.io

developer.curity.io

@curityio

info@curity.io


