Privacy-Preserving Analytics and Secure Multiparty Computation

Ulf Mattsson Chief Security Strategist www.Protegrity.com PROTEGRITY

(ISC)2 East Bay Chapter

Ulf Mattsson

- Chief Security Strategist, Protegrity
- Chief Technology
 Officer, Protegrity, Atlantic
 BT, and Compliance
 Engineering
- Head of Innovation, TokenEx
- **IT Architect,** IBM

Payment Card Industry (PCI)

Security Standards

Council (SSC):

Security ® Standards Council ٠

•

- 1. Tokenization Task Force
- 2. Encryption Task Force, Point to Point Encryption Task Force
- 3. Risk Assessment
- 4. eCommerce SIG
- 5. Cloud SIG, Virtualization SIG
- 6. Pre-Authorization SIG, Scoping SIG Working Group

- Develops Industry Standards
 - **Inventor** of more than 70 issued US Patents
 - **Products and Services**:
 - Data Encryption, Tokenization, and Data Discovery
 - Cloud Application Security Brokers (CASB) and Web Application Firewalls (WAF)
 - Security Operation Center (SOC) and Managed Security Services (MSSP)
 - Robotics and Applications

Cloud Security Alliance Cybersecurity and Cryptographic Quantum Computing Solutions **Tokenization Management and** CSA security alliance® Security **Cloud Management and Security Quantum Computing Risk Study** American National Standard for Financial Services ANSI X9.141-2020 **Financial Services Data Security Breach** Part 1: Data Protection Part 1: Using Encryption Methods Format-Preserving Encryption – Part 4

How Innovative Businesses Win with Secure Machine Learning **ISACA JOURNAL** May 2021 **Privacy-Preserving Analytics and** Secure Multi-Party Computation **ISACA JOURNAL** May 2020 **Practical Data Security and Privacy for GDPR and CCPA** DEVELOPING AND CONNECTING YBERSECURITY LEADERS GLOBALLY Dec 2019 **Data Security: On Premise or** in the Cloud By Ulf Mattsson - ISSA member, New York Chapter DEVELOPING AND CONNECTING CYBERSECURITY LEADERS GLOBALLY May 2020 **Data Privacy: De-Identification Techniques** By Ulf Mattsson - ISSA member, New York Chapter

ISACA JOURNAL

Nov 2021

Applications & Services being migrated to the Cloud

The CCPA Effect

The Rise of Legislation

GDPR under "Schrems II"

Legal safeguards:

AWS Sarl guarantees in its contract with Doctolib, a French company, that it will challenge any general access request from a public authority.

Technical safeguards:

- Technically the data hosted by AWS Sarl is encrypted.
 - AWS Sarl, a Luxembourg registered company.
- The key is held by a trusted third party in France, not by AWS.

Other guarantees taken:

- No health data.
 - The data hosted relates only to the identification of individuals for the purpose of making appointments.
- Data is deleted after three months.

https://iapp.org/news/a/why-this-french-court-decision-has-farreaching-consequences-for-many-businesses/

In scope for PCI DSS?

The following is NOT in scope for PCI DSS

The following are each in scope for PCI DSS:

- Systems performing encryption and/or decryption of cardholder data, and systems performing key management functions
- 2. Encrypted cardholder data that is not isolated from the encryption and decryption and key management processes
- **3. Encrypted** cardholder data that is present on a system or media that also contains the decryption **key**
- 4. Encrypted cardholder data that is present in the same environment as the decryption key
- 5. Encrypted cardholder data that is accessible to an entity that also has access to the decryption key

https://blog.pcisecuritystandards.org

HYOK (Hold Your Own Key) vs AWS Key Management

A Data Security Gateway Can Protect Sensitive Data in Cloud and On-premise

AWS Key Management

AWS hosted Key Management (AWS Keys)

AWS Key Management

Client-side Key Management with AWS (BYOK)

AWS Key Management

HSM with AWS Key Management (BYOK)

Multi-cloud Risk

SASE Is One of the Fastest Growing Markets

Cloud Security Logical Architecture

PRZTEGRITY

Copyright © Protegrity Corp.

Cloud Security Architecture

Copyright © Protegrity Cor

PR*PTEGRITY*

Big Data Protection with Granular Field Level Protection for Google Cloud

Use Case (Financial Services) - Compliance with Cross-Border and Other Privacy Restrictions

Protection of data in AWS S3 with Separation of Duties

- Applications can use deidentified data or data in the clear based on policies
- Protection of data in AWS S3 before landing in a S3 bucket

Separation of Duties

PR*⁷***TEGRITY**

Data Security Management for Hybrid Cloud

Consistency

- Most firms are quite familiar with their onpremises encryption and key management systems, so they often prefer to leverage the same tool and skills across multiple clouds.
- Firms often adopt a **"best of breed" cloud** approach.

Trust

• Some customers simply do not trust their vendors.

Vendor Lock-in and Migration

 A common concern is vendor lock-in, and an inability to migrate to another cloud service provider.

Some Major Cloud Databases

DB	Snowflake	Amazon Redshift	Azure Synapse Analytics	Google BigQuery	
Sharing	Easy between different accounts.	Multiple data output formats			
Flexibility	Flexible	Less flexible			
Scale	Instant scaling. Easy to maintain	Scale up and scaledown manually			
Management	Easy to set up. Automated	Periodic vacuuming tables. Min		Automatic management. Intuitive	
	maintenance	administration			
Data	Rows. Support for JSON	Column-oriented		columnar	
Roll back		Roll-back on transactions		Cannot roll back on transactions	
Integration	Ingesting fast. On-premise doesn't integrate	Largest cloud ecosystem. Much latency			
Speed		2 times faster than other			
Easy		User-friendly. Datalakes, easy			
Price starts	Storage costs separate. \$2.01 per hour.	Pay as you use model. \$0.25 per hour	Not cost-effective as others	Complicated. Cost separate for storage. Quereries cost \$5/TB, add quickly	
Storage		\$306 per TB per month		\$20 per TB per month	
Security	Secure views and user-defined functions	Rich cloud services		B2B identity management with Oauth	
		Encryption for client and server			
		Column-level access control.			
Support		Needs improvement.	Great support		
Stability		Robust. Some issues with stability			
Max columns		1,600 columns in a single table		<u>10,000 columns</u>	
Workloads		Analytical not transactional		Great at big chunks in a small time. Data scientists and ML	

Secure Multi-

Party

Computation

Secure Multi-Party Computation (MPC)

Private multi-party machine learning with MPC

Using MPC, different parties send encrypted messages to each other, and obtain the model F(A,B,C) they wanted to compute without revealing their own private input, and without the need for a trusted central authority.

Central trusted authority

Secure Multi-Party machine learning

https://royalsociety.org

PR*PTEGRITY*

Case Study – HE and Securely sharing sensitive information

An example from the healthcare domain.

The recent ability to fully map the human genome has opened **endless possibilities for advances in healthcare.**

- 1. Data from **DNA analysis** can test for genetic abnormalities, empower **disease-risk analysis**, discover family history, and the presence of an Alzheimer's allele.
 - But these studies require very large DNA sample sizes to detect accurate patterns.
- 2. However, sharing personal DNA data is a particularly problematic domain.
 - Many citizens hesitate to share such personal information with third-party providers, uncertain of if, how and to whom the information might be shared downstream.
- 3. Moreover, legal limitations designed to protect privacy restrict providers from sharing this data as well.
- **4. HE** techniques enable citizens to share their genome data and **retain key privacy concerns** without the traditional all-or-nothing trust threshold with third-party providers.

Analytics and

Increased need for data analytics drives requirements.

Internal and Individual Third-Party Data Sharing

Secure Multi Party Computation

Global Hadoop Big Data Analytics Market

Source: Adapted from Maximize Market Research

PR

Analytics and AI

Feelings about Impact of New Technologies

	%					
Area	Positive	Negative	Don't know	Equal		
Personalized medicine	50	10	25	15		
Driverless cars	44	20	26	11		
AI	44	20	26	11		
Gene editing	41	14	27	19		
Blockchain	35	18	25	21		

Source: Adapted from Edelman Trust Barometer

What did we do before Machine Learning?

Artificial Intelligence and Machine Learning

Increased need for Data Analytics

Reduce Risk

• Secure AI & ML

Use-cases

- Analysis
- Insight
- Dashboarding
- Reporting
- Predictions
- Forecasts
- Simulation
- Optimization

Values

- Savings
- Revenue add

Anonymization to minimize the risk of identification

Analytics, Data Science, AI and ML

Examples in Banking Credit Card Approval,

- Reducing the risk from 26% down to 8%
- 98% accuracy compared to the Initial Model

Secure AI & ML

Use-cases

- Analysis
- Insight
- Dashboarding
- Reporting
- Predictions
- Forecasts
- Simulation
- Optimization

Values

- Savings
- Revenue add

Anonymization to minimize the risk of identification

- Examples in Banking Credit Card Approval,
- Reducing the risk from 26% down to 8%
- 98% accuracy compared to the Initial Model

PR*PTEGRITY*

Conceptual Reference Architecture for Machine Learning

PR*PTEGRITY*

Architecture for Machine Learning - Data Protection

AI & ML

PR*PTEGRITY*

Gartner Hype Cycle for Emerging Technologies, 2020

Gartner Hype Cycle for Emerging Technologies, 2020

Products and Services Scores for Business and Data Exploration,

Dataiku		4.40
SAS		4.36
TIBCO Software		4.33
KNIME		4.32
IBM		4.27
RapidMiner		4.27
MathWorks		4.25
Alteryx		4.23
Databricks		4.13
DataRobot		4.12
Microsoft		4.04
Altair		3.98
Domino		3.97
H20.ai		3.87
Google		3.86

PR

Gartner MQ for Data Science and Machine Learning Platforms

Data and analytics pipeline, including all the following areas:

- 1. Data ingestion
- 2. Data preparation
- 3. Data exploration
- 4. Feature engineering
- 5. Model creation and training
- 6. Model testing
- 7. Deployment
- 8. Monitoring
- 9. Maintenance
- 10. Collaboration

https://www.kdnuggets.com/2020/02/gartnermq-2020-data-science-machine-learning.html

PR

Gartner MQ for Data Science and Machine Learning Platforms, 2021

Data and analytics pipeline, including all the following areas:

- 1. Data ingestion
- 2. Data preparation
- 3. Data exploration
- 4. Feature engineering
- 5. Model creation and training
- 6. Model testing
- 7. Deployment
- 8. Monitoring
- 9. Maintenance
- 10. Collaboration

Responsible Al

Aims to address the Trust and Ethics related to decisions made by AI models

· GANs with DP

Confidential AI

Aims to enable centralized and decentralized AI consortiums safely

ML on Encrypted Data

Federated Learning

- Queries as-a-service
- AI Models as-a-service

closeness

Use Case: Insilico Medicine

An alternative to animal testing for research and development programs in the pharmaceutical industry.

 By using artificial intelligence and deep-learning techniques, Insilico is able to analyze how a compound will affect cells and what drugs can be used to treat the cells in addition to possible side effects

A comprehensive drug discovery engine, which utilizes **millions of samples and multiple data types** to discover signatures of disease and identify the most promising targets for billions of molecules that already exist or can be generated de novo with the desired set of parameters.

Machine Learning Model Lifecycle - Example

Define the model: using the Sequential or Model class and add the layers
 Compile the model: call compile method and specify the loss, optimizer and metrics

3. Train the model: call fit method and use training data

4. **Evaluate** the model: call evaluate method and use testing data to evaluate trained model

5. Get predictions: use predict method on **new data for predictions**

Digikey, techbrij

Copyright © Protegrity Corp.

Specify Access Control and Data Protection to Use

Review Use Cases and Types of Data

Implement

- 1. Dynamic Masking
- 2. Tokenization
- 3. Encryption

PR

Who Should See the Data?

Data Protection Techniques

Use Cases

What Data Protection Technique do I need?

Monitoring

Transactional auditing and monitoring that provides greater context to who, what, and how data is being accessed

Masking

Presentation layer data protection that does not change the data at rest or in transit

Access Control

Database views are native access control tools that limit the data that can be accessed

High Usability

Examples of a few Privacy-Preserving Techniques

Tokenization Data deidentification that provides superior data protection

Unlock the Potential of Data Security

- Data Security Governance Stakeholders

Source: Gartner

Protect data in ways that are transparent to business processes and compliant to regulations

Copyright © Protegrity Corp.

What are the Drivers for these People?

Copyright © Protegrity Corp.

Source: Adapted from Gartner

Implementation Effort

PR*PTEGRITY*

How are Data Protection Techniques different?

PR*PTEGRITY*

What Data is Sensitive?

What Data is Regulated?

- EU GDPR
- US California CCPA / CPRA
- PCI DSS
- US HIPAA

Discover Your Data

Use Cases involving Analytics

Secure AI – Use Case with Synthetic Data

PR&TEGRITY Public Cloud (Iaas) Risk, Complexity & Cost

CIO — Security and Complexity Are Top Challenges

Top Challenges Using Multiple Public Cloud Infrastructure (IaaS) Providers Up to Three Selections Allowed

PR*PRTEGRITY*

Homomorphic encryption (HE)

HE depicted in a client-server model

- The client sends encrypted data to a server, where a specific analysis is performed on the encrypted data, without decrypting that data.
- The encrypted result is then sent to the client, who can decrypt it to obtain the result of the analysis they wished to outsource.

PR

Use Cases for Secure Multi Party Computation & Homomorphic Encryption (HE)

Business models and application domains:

Domain	Genomics	Health	National Security	Education	Social Security	Business Analytics	Cloud
Sample Topics	GWAS	billing and reporting	smart grid	school dropouts	credit history	prediction	storage, sharing
Data Owner	medical institutions	clinics and hospitals	nodes and network	schools, welfare	government	business owners	clients
Why HE?	HIPAA	cyber insurance	privacy	FERPA	cyber crimes	data are valuable	untrusted server
Who pays?	health insurance	hospital	energy company	DoE	government	business owners	clients

http://homomorphicencryption.org

PRZTEGRITY

Use case – Retail - Data for Secondary Purposes

Large aggregator of credit card transaction data.

Open a new revenue stream

- Using its data with its **business partners**: **retailers**, **banks** and **advertising** companies.
- They could help their partners achieve better ad conversion rate, improved customer satisfaction, and more timely offerings.
- Needed to respect user privacy and specific **regulations**. In this specific case, they wanted to work with a retailer.
- Allow the retailer to gain insights while protecting user privacy, and the credit card organization's IP.
- An analyst at each organization's office first used the software to link the data without exchanging any of the underlying data.

Data used to train the machine learning and statistical models.

- A logistic and linear regression model was trained using secure multi-party computation (SMC).
- In the simplest form SMC **splits a dataset into secret shares** and enables you to train a model without needing to put together the pieces.
- The information that is communicated between the peers is **encrypted at all times** and cannot be reverse engineered.

With the augmented dataset, the retailer was able to get a **better picture of its customers buying habits**.

Use case - Financial services industry

Confidential financial datasets which are vital for gaining significant **insights**.

- The use of this data requires navigating a minefield of **private client information** as well as **sharing data** between independent financial institutions, to create a **statistically significant dataset**.
- Data privacy regulations such as CCPA, GDPR and other emerging regulations around the world
- **Data residency** controls as well as enable data **sharing in a secure and private** fashion.

Reduce and remove the legal, **risk and compliance** processes

- Collaboration across divisions, other organizations and across jurisdictions where data cannot be relocated or shared
- Generating **privacy** respectful datasets with **higher analytical value** for Data Science and Analytics applications.

PR*PTEGRITY*

Use case: Bank - Internal Data Usage by Other Units

A large bank wanted to broaden access to its **data lake** without compromising data **privacy**, preserving the data's **analytical value**, and at reasonable infrastructure costs.

- Current approaches to de-identify data did not fulfill the compliance requirements and business needs, which had led to several bank projects being stopped.
- The issue with these techniques, like masking, tokenization, and aggregation, was that they did not sufficiently protect the data without overly degrading data quality.

This approach allows creating privacy protected datasets that retain their analytical value for Data Science and business applications.

A plug-in to the organization's analytical pipeline to enforce the compliance policies before the data was consumed by data science and business teams from the data lake.

• The analytical quality of the data was preserved for machine learning purposes by-using AI and leveraging privacy models like **differential privacy and k-anonymity**.

Improved data access for teams **increased the business' bottom line** without adding excessive infrastructure costs, while **reducing the risk** of-consumer information exposure.

Trusted execution environments

Trusted Execution Environments (TEEs) provide secure computation capability through a combination of **special-purpose hardware** in modern processors and software built to use those hardware features.

The special-purpose hardware provides a mechanism by which a process can run on a processor **without its memory or execution state being visible to any other process** on the processor,

not even the operating system or other privileged code.

Computation in a TEE is **not** performed on data while it remains **encrypted**.

- Typically, the memory space of each TEE (enclave)
 application is protected from access
 - AES-encrypted when and if it is stored offchip.

Usability is low and products/services are emerging in MS Azure, IBM's cloud service Amazon AWS (late 2020)*

PR

6 Differential Privacy Models

In differential privacy, the concern is about privacy as the relative difference in the result whether a specific individual or entity is included in the input or excluded

PR*PTEGRITY*

k-Anonymity

Name	Postcode	Age	Gender	Disease	Name	Postcode	Age	Gender	Disease
Patrick	SW1 4YB	22	Male	Cardiovascular	*	SW1 *	22	Male	Cardiovascular
Sebastian	SW1 4ZE	23	Male	Respiratory	*	SW1 *	23	Male	Respiratory
Reece	SW1 2HY	18	Male	No Illness	*	SW1 *	18	Male	No Illness
Tilly	NW10 8FN	47	Female	Cancer	*	NW10 *	47	Female	Cancer
Abby	NW10 4AB	42	Female	No Illness	*	NW10 *	42	Female	No Illness
Elise	NW10 0FW	56	Female	Cardiovascular	*	NW10 *	56	Female	Cardiovascular
Morgan	E17 9QY	23	Male	Respiratory	*	E17 *	23	*	Respiratory
George	E17 3SF	29	Male	Liver	*	E17 *	29	*	Liver
Sienna	E17 5WD	18	Female	Cancer	*	E17 *	18	*	Cancer

For k-anonymity to be achieved, there need to be at least k individuals in the dataset who share the set of attributes that might become identifying for each individual.

K-anonymity might be described as a 'hiding in the crowd' guarantee: if each individual is part of a larger group, then any of the records in this group could correspond to a single person. This second table shows the data anonymised to achieve k-anonymity of k = 3, as you can see this was achieved by generalising some quasi-identifier attributes and redacting some others.

Data protection techniques: Deployment on-premises, and clouds

Privacy enhancing data de-identification terminology and classification of techniques			Data Warehouse	Centralized	Distributed	On- premises	Public Cloud	Private Cloud
		Vault-based tokenization		у				У
	lokenization	Vault-less tokenization	У	у	у	у	У	У
De- identification techniques	Cryptographic	Format preserving encryption		у	У	у	У	у
	tools	Homomorphic encryption			у		У	
	Suppression	Masking	у	У	у	у	У	у
	techniques	Hashing	у	у	у	у	У	У
Formal	Differential Privacy	Server model	у	У	у	у	У	У
privacy		Local model	у	у	у	у	у	у
measurement	K-anonymity	L-diversity	у	у	у	у	у	у
models	model	T-closeness	у	у	у	у	у	у

PR*PTEGRITY*

PR*PTEGRITY*

Quantum Computers?

- Quantum computers and other strong computers can break algorithms and patterns in encrypted data.
- We can instead use random numbers to secure sensitive data.
- Random numbers are not based on an algorithm or pattern that computers can break.

Tech giants are building their own machines and speeding to make them available to the world as a cloud computing service. In the competition: IBM, Google, Microsoft, Intel, Amazon, IonQ, Quantum Circuits, Rigetti Computing

Data store

Copyright © Protegrity Corp

User

Dynamic Data Masking

Lower Risk and Higher Productivity with More Access to More Data

PR 7EGRITY

Technique name

Risk Reduction

at record attributes level Use Singling out Linking Inference Tran sit Storage Protects the data flow Pseudonymization Tokenization Yes Yes Yes Yes Direct identifiers No Partially No from attacks Protects the data when Deterministic Partially No Yes No Yes Yes No not used in processing All attributes encryption operations Order-preserving Protects the data from Partially Partially Partially No Cryptographic tools Partially All attributes Yes No encryption attacks Protects the data also Homomorphic No No when used in processing Yes Yes Yes Yes No All attributes encryption operations Protects the data in Masking Partially No dev/test and analytical Yes Yes Yes Yes Local identifiers Yes applications Identifying Protects the data in Local suppression Partially Partially Partially Yes Yes Yes Yes attributes analytical applications Suppression Removes the data from Record suppression Yes Yes Yes All attributes Yes Yes Yes Yes the data set Exposes only a subset of Sampling the data for analytical Partially Partially Partially Yes Partially Partially Partially All attributes applications Protects the data in Identifying Generalization Partially Partially Partially dev/test and analytical Yes Yes Yes Yes attributes applications Protects the data in Identifying Generalization Rounding Partially Partially dev/test and analytical Yes Yes Yes Yes No attributes applications Protects the data in Identifying dev/test and analytical Partially Partially Top/bottom coding Yes Yes Yes No Yes attributes applications Protects the data in Identifying Noise addition Partially Partially dev/test and analytical Yes Yes Yes No Partially attributes applications Protects the data in Identifying Randomization Permutation Yes Yes No Partially Partially Partially dev/test and analytical Yes attributes applications Protects the data in No Partially Partially Micro aggregation dev/test and analytical Yes Yes Yes No All attributes applications Protects the data in Identifying Partially Differential privacy No Yes Yes No Yes Yes analytical applications attributes Privacy models Protects the data in K-anonymity No No Yes Yes Yes Quai identifiers Yes Partially analytical applications

Data protected in

Use Case / User Story

Data

truthfulness

Applicable to

types of

Reduces the risk of

Source: INTERNATIONAL STANDARD ISO/IEC 20889

Difference between encryption and tokenization techniques

Source: INTERNATIONAL STANDARD ISO/IEC 20889

Examples of operational aspects of different tokenization techniques

Source: INTERNATIONAL STANDARD ISO/IEC 20889

Latency, performance & footprint

Best

Vault-based Dynamic

- Large, expanding
- Replication required
- Prone to collisions
- Will impact performance
 and scalability

Worst Best

Vault-less

- Small, static
- No replication required
- No collisions
- Minimum impact on performance and scalability. All operations in memory.

Vault-based Pre-generated

- Large, static
- No replication required
- No collisions
- Will impact performance and scalability. Faster than dynamic approach.

Replication & Collisions

Worst

PR*PTEGRITY What Data Protection Technique is Fastest?*

*: Speed will depend on the configuration
k-Anonymity Use Case

Name	Postcode	Age	Gender	Disease	Name	Postcode	Age	Gender	Disease
Patrick	SW1 4YB	22	Male	Cardiovascular	*	SW1 *	22	Male	Cardiovascular
Sebastian	SW1 4ZE	23	Male	Respiratory	*	SW1 *	23	Male	Respiratory
Reece	SW1 2HY	18	Male	No Illness	*	SW1 *	18	Male	No Illness
Tilly	NW10 8FN	47	Female	Cancer	*	NW10 *	47	Female	Cancer
Abby	NW10 4AB	42	Female	No Illness	*	NW10 *	42	Female	No Illness
Elise	NW10 0FW	56	Female	Cardiovascular	*	NW10 *	56	Female	Cardiovascular
Morgan	E17 9QY	23	Male	Respiratory	*	E17 *	23	*	Respiratory
George	E17 3SF	29	Male	Liver	*	E17 *	29	*	Liver
Sienna	E17 5WD	18	Female	Cancer	*	E17 *	18	*	Cancer

For k-anonymity to be achieved, there need to be at least k individuals in the dataset who share the set of attributes that might become identifying for each individual.

K-anonymity might be described as a 'hiding in the crowd' guarantee: if each individual is part of a larger group, then any of the records in this group could correspond to a single person. This second table shows the data anonymised to achieve k-anonymity of k = 3, as you can see this was achieved by generalising some quasi-identifier attributes and redacting some others.

11 Published International Privacy Standards

PR

References A:

- 1. C. Gentry. "A Fully Homomorphic Encryption Scheme." Stanford University. September 2009, <u>https://crypto.stanford.edu/craig/craig-thesis.pdf</u>
- 2. Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process, <u>https://csrc.nist.gov/publications/detail/nistir/8309/final</u>
- 3. ISO/IEC 29101:2013 (Information technology Security techniques Privacy architecture framework)
- 4. ISO/IEC 19592-1:2016 (Information technology Security techniques Secret sharing Part 1: General)
- 5. ISO/IEC 19592-2:2017 (Information technology Security techniques Secret sharing Part 2: Fundamental mechanisms
- 6. Homomorphic Encryption Standardization, Academic Consortium to Advance Secure Computation, <u>https://homomorphicencryption.org/standards-meetings/</u>
- 7. Homomorphic Encryption Standardization, <u>https://homomorphicencryption.org/</u>
- 8. NIST Post-Quantum Cryptography PQC, <u>https://csrc.nist.gov/Projects/Post-Quantum-Cryptography</u>
- 9. UN Handbook on Privacy-Preserving Computation Techniques, <u>http://publications.officialstatistics.org/handbooks/privacy-preserving-techniques-handbook/UN%20Handbook%20for%20Privacy-Preserving%20Techniques.pdf</u>
- 10. ISO/IEC 29101:2013 Information technology Security techniques Privacy architecture framework, <u>https://www.iso.org/standard/45124.html</u>

11. Homomorphic encryption, <u>https://brilliant.org/wiki/homomorphic-encryption/</u>

Thank You!

Ulf Mattsson Chief Security Strategist www.Protegrity.com

Has your organization loosened its security policies and settings now that most people are presumably working from home?

Yes, we have loosened things.

Copyright © Protegrity Corp.

Data Security Management for Hybrid Cloud

Consistency

- Most firms are quite familiar with their onpremises encryption and key management systems, so they often prefer to leverage the same tool and skills across multiple clouds.
- Firms often adopt a **"best of breed" cloud** approach.

Trust

• Some customers simply do not trust their vendors.

Vendor Lock-in and Migration

• A common concern is **vendor lock-in**, and an inability to migrate to another cloud service provider.

Copyright © Protegrity Corp. ecurosis, 2019

Unencrypted Data (Plaintext)

- 1: 123-12-1234
- 2: 123-12-1235
- 3: 123-12-1234

Encrypted Data (Ciphertext)

- 1: MjM0MjM0MjM0LTEyMz Q1NjIzNDM0DQo=
- 2: VGhpcyBpcyBhIHNhbXB lwaGVydGV4dC43=
- 3: MjM0MjM0MjM0LTEyMz Q1NjIzNDM0DQo=

Search is utilized in virtually every application and is critical in a collaborative cloud environment. As mentioned, regular encryption hides data so well that search is not feasible. However, it is possible to efficiently search on encrypted data if one is willing to sacrifice some security. In general, any efficiently searchable encryption algorithm shares a common security weakness: equality of keywords is leaked, making certain statistical attacks possible.

The Landscape

Fraud & Identity Thefts

Data Privacy Enforcement Actions Worldwide

The Old Corporate IT Environment

Study: Top Priorities in 2020

Study: Top Priorities in 2020

Hitachi

PR*²***TEGRITY**

An Increasingly Distributed Environment

Risks & Control in our New Distributed Environment

PR TEGRITY Under control? Is the situation getting worse?

- 1. How do we control privacy of Test Data? Using Prod Data to meet Their Goals? Outsourced testing?
- 2. Do we have increasingly less control over distributed data when working from home? IAttack Surface increasing?
- 3. Is compliance under control? Is the situation getting worse?
- 4. How much is End-point security helping? How can we protect against Supply Chain Attacks? Solarwinds?

Factors Impacting Information Security Functions in Three to Five Years

Source: Gartner 2020 Security & IAM Solution Adoption Trends Survey

10 © 2020 Gartner, Inc. and/or its affiliates. All rights reserved. Gartner is a registered trademark of Gartner, Inc. and its affiliates.

Gartner

Ransomware and other Breaches on The Rise

BankinfoSecurity.com

Electronic Health Records:

• Healthcare's attack surface has grown considerably over the last two decades.

Verizon DBIR 2021

https://threatpost.com

Ransomware

Figure 17: Percentage of organizations affected by ransomware in the last 12 months, by country.

Source: https://www.isc2.org/-/media/ISC2/Research/Cyberthreat-Defense-Report/2021/CyberEdge-2021-CDR-Report-v10--ISC2-Edition.ashx?la=en&hash=60BC7C7969857E2FF07B714896F079EF5C9C1C39

Ransomware

Figure 18: Percentage of organizations affected by ransomware in the last 12 months, by industry.

Source: https://www.isc2.org/-/media/ISC2/Research/Cyberthreat-Defense-Report/2021/CyberEdge-2021-CDR-Report-v10--ISC2-Edition.ashx?la=en&hash=60BC7C7969857E2FF07B714896F079EF5C9C1C39

Factors Impacting Information Security Functions in Three to Five Years

Source: Gartner 2020 Security & IAM Solution Adoption Trends Survey

10 © 2020 Gartner, Inc. and/or its affiliates. All rights reserved. Gartner is a registered trademark of Gartner, Inc. and its affiliates.

PEnerging IT Security Technologies

Describe your organization's deployment plans for each of the following emerging IT security technologies / architectures.

Currently in production Implementation in progress Implementation to begin soon Implementation to begin

PR*T***EGRITY Organizations migrating workloads to the Cloud**

	Biz Apps	Data Warehouses
Currently Migrating	41%	30%
Migrating in 12 mo	17%	15%
Migrating in 1-3 years	14%	15%
% of the market moved or moving with 3 years	72%	60%

The 2020 IDG Cloud Computing Survey

(Represents the 551 IT decisionmakers)

Area	Timing	Focus	Comments Use o	case: Bank		
Requirements	Short	Internal requirements	International regulations			
Cloud	Short	Machine Learning	Start with basic ML training and inference on senstivie data in cloud			
Competition	Short	Competitive advantage	ML and NLP-powered services can give banks a competitive edge			
Data	Short	Encrypted data	Important			
Data	Long	Synthetic data	Computing cost?			
Analytics	Medium	AML / KYC	What are other Large banks doing?			
	Short	Analytics	Initial focus			
	Short	Operation on encrypted data	Computation on sensitive data to the cloud. Trade-offs with performance, protection	on and utility?		
Industry	Short	Industry dialog	Working groups in standard bodies (ANSI X9, Cloud Security Alliance, Homomorphic	c Encryption Org)		
Model	Short	Encrypted model	Important			
Pilot	Short	Experimentation	What are other Large banks doing?			
	Short	Scotia Bank case study	Query solution for AML / KYC			
Proven	Medium	Fast follower	What are some proven solutions?			
Quantum	Short	Homomorphic	Lattice-based cryptography is a promising post-quantum cryptography family, both	in terms of		
		Encryption post-	foundational properties as well as its application to both traditional and homomorphic	ohic encryption		
	Medium	Quantum	Plan for quantum safe algorithms			
	Long	Quantum	Plan for quantum ML algorithms			
Sharing	Short	Secure Multi-narty	Without revealing their own private inputs and outputs. Encrypted data and encryp	tion keys never		
		Computing (SMPC)	comingled while computation on the encrypted data is occurring or an encryption k	key is split into		
			shares			
Solutions	Short	Vendor nositioning	Nonlinear ML regression needed? Linear Regression is one of the fundamental sup	ervised-ML. Linear		
	Short		and non-linear credit scoring by combining logistic regression and support vector n	nachines		
	Short	Framework integration	Important			
3rd party	Long	3rd party integration	Mining first			
Training ML	Long	Federated learning	Complicated			
	Long	TEE	Emerging			