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Organizations are increasingly concerned about 
data security in several scenarios, including 
collecting and retaining sensitive personal 
information; processing personal information in 
external environments, such as the cloud; and 
information sharing. Commonly implemented 
solutions do not provide strong protection from 
data theft and privacy disclosures. 

Privacy and risk management professionals are 
particularly concerned about the privacy and 
security of data used in analytics and shared 
externally. Compliance to privacy regulations such 
as the US State of California Consumer Privacy Act 
(CCPA), the EU General Data Protection Regulation 
(GDPR) and other emerging regulations around the 
world require techniques for secure processing of 
sensitive data. New approaches to privacy 
preserving computing that are transparent to 
business processes can open new opportunities 
and help find the right balance between privacy, 
security and compliance (figure 1). 

Encrypting data at rest is not sufficient to avoid data 
breaches. Data-at-rest encryption creates a “crypto 
boundary,” outside of which data are accessible in 
plaintext. Because plaintext data are normally 
needed for processing, this boundary often exists 
below the point at which a compromise is possible. 
Data-at-rest encryption also does not support 
scenarios in which data has to be shared with other 
organizations. For data to be useful, they usually 
must be accessible as plaintext within applications, 
and this significantly reduces encryption’s 
protection capability. A drawback of typical data 
masking techniques is that they do not broadly 
support the protection of transactional or behavioral 
data. These limitations of data-at-rest encryption 
and data masking are driving an increased focus on 
finding new techniques for data protection—
particularly advanced approaches that can protect 

data in contexts where traditional encryption and 
data masking approaches cannot.     

Sharing Sensitive Information Securely 
Different industries are taking advantage of secure 
data sharing techniques. New privacy-preserving 
computing approaches are needed to meet legal 
requirements and provide privacy for data sharing. 

The Benefits of Secure Data Sharing in Healthcare 
Consider an example from the healthcare domain. 
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The fairly recent ability to fully map the human 
genome has opened endless possibilities for 
advances in healthcare. Data from DNA analysis 
can test for genetic abnormalities, empower 
disease-risk analysis, and help discover family 
history and the presence of an Alzheimer’s allele. 
These studies require very large DNA sample sizes 
to detect accurate patterns; however, sharing 
personal DNA data is a particularly problematic 
domain. Many citizens hesitate to share such 
personal information with third-party providers, 
uncertain of if, how and to whom the information 
might be shared downstream. Moreover, legal 
limitations designed to protect privacy restrict 
providers from sharing this data as well. 
Homomorphic encryption (HE) techniques enable 
citizens to share their genome data and retain key 
privacy concerns without the traditional all-or-
nothing trust threshold with third-party providers. 

Benefits of Secure Data Sharing for Financial 
Organizations 
A typical financial institution may see only up to 25 
percent of its customers’ activity. Secure 
collaboration across institutions, business lines and 
borders helps to speed processes, cut false 
positives, lower operational costs and catch more 
criminals by having a more complete views of all 
activities. Gaining these insights requires navigating 
a minefield of private client information and sharing 
confidential financial data between independent 
financial institutions. 

Financial institutions can benefit from three forms 
of data sharing:1 

Inbound data from third parties 1.

Owned outbound data with third parties 2.

Collaborative data that can be similar forms of 3.
data inbound and outbound 

Inbound data sharing allows institutions to enrich 
their decision-making systems2 with additional 
information, leading to higher-quality outputs and 
more accurate operations. For example, trading 
firms can use third-party services such as Thomson 
Reuters MarketPsych Indices3 to inform their 
buy/sell decisions with social media data, 
hypothetically leading to a more accurate 
understanding of market sentiment. Outbound data 
sharing, on the other hand, enables institutions to 
draw on capabilities (and offer customer benefits) 
that they may not own internally. For example, 
Wealthsimple, a robo-adviser, allows its clients’ 
portfolio information to be pulled into Mint.com 
through a secure connection,4 so that customers 
can see their investment balances alongside their 
day-to-day spending and build a comprehensive 
understanding of their finances.5 

Privacy-Enhanced Computation 
Figure 2 illustrates a data flow that brings together 
different privacy-preserving techniques that can 
provide security for data in use and data sharing.   

Figure 1—Balance Between Privacy, Security and Compliance 
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Positioning Different Data Protection Techniques 
De-identification techniques and formal privacy 
measurement models are defined in the 
International Organization for Standardization 
(ISO)/International Electrotechnical Commission 
(IEC) standard ISO/IEC 20889:2018 Privacy 
Enhancing data de-identification terminology and 
classification of techniques.6 Some of the 
techniques include two-way reversable methods 
and non-reversable one-way methods.7, 8 Figure 3 
illustrates the positioning of different data 
protection techniques. 

Characteristics of different data protection 
techniques include: 

Algorithmic techniques use encryption keys and •
encryption algorithms. 

Differential privacy and k-anonymity models add •
noise that may impact the correctness of 
statistical operations. 

Homomorphic encryption offers computing •
operations on encrypted data that can provide 
privacy during flow and processing between 
computers, suitable for the training of machine 

Figure 2—Security for Data in Use and Data Sharing
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Figure 3—Positioning Different Data Protection Techniques

2-Way 1-Way

Format
Preserving
Encryption

(FPE)Tokenization

Random

Fast Slow

Algorithmic

Format
Preserving

Homomorphic
Encryption

(HE)

Computing
on

Encrypted
Data Machine

Learning (ML)

Noise
Added

Format
Preserving

Fast

Differential
Privacy (DP) K-Anonymity

Model

Analytics

Secure 
Multiparty

Computation
(SMPC)

Privacy-Preserving
Computation (PPC)

Hashing Masking

Fast

Very
Slow



ISACA JOURNAL VOL 24 © 2021 ISACA. All rights reserved. www.isaca.org

learning models and secure multiparty 
computation (SMPC). 

Format preserving techniques also preserve the •
length of data fields. 

Analytical applications may require fast search •
on encrypted data values, sometimes also  
fuzzy search. 

Techniques for preserving privacy can be divided 
into three categories, each with its own benefits and 
constraints: field-level data transformations, 
software-based secure computation algorithms, 
and architectures that use cryptographic data 
transformations and hardware-based security 
mechanisms. 

However, privacy-preserving computation comes at 
a cost. Current versions of these technologies are 
often computationally costly, rely on specialized 
computer hardware, and are difficult to program and 
configure directly.9 

Secure Multiparty Computation 
In SMPC, computations can be performed on data 
contributed by multiple parties without any 
individual party being able to see more than the 
portion of the data they contributed. This enables 
secure computation to be performed without the 

need for a trusted third party. Figure 4 illustrates 
that participants collaborate on the computation 
knowing only the results of that computation and 
not the specific data others contributed, without the 
need of a central entity. 

Example of Multiparty Computation: Retail 
A large aggregator of payment card transaction data 
wanted to open a new revenue stream by using its 
data with its business partners in retail and banking. 
The aggregator helped their partners achieve a better 
ad conversion rate, improve customer satisfaction 
and provide more timely offerings. 

By using secure multiparty computation, the 
aggregator could respect user privacy and specific 
regulations and enable the retailer to gain insights 
while protecting the organization’s Internet protocol 
(IP). An analyst at each organization’s office first used 
the software to link the data without exchanging any 
of the underlying data and using the protected data to 
train the machine learning and statistical models. The 
aggregator split the data set into secret shares and 
trained the model without needing to put together the 
pieces. The information that was communicated 
between peers was always encrypted. As a result, the 
retailer was able to get a better picture of its 
customers’ buying habits. 

Figure 4—Participants Collaborate on Computation
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Example of Multiparty Computation: Average 
Salary 
“Allie’s salary is US$100K. In additive secret sharing, 
US$100K is split into three randomly generated 
pieces (or secret shares): US$20K, US$30K, and 
US$50K for example.10 Allie keeps one of these 
secret shares (US$50K) for herself and distributes 
one secret share to each Brian (US$30K) and 
Caroline (US$20K). Brian and Caroline also secret 
share their salaries while following the same 
process (figure 5). Each participant locally sums 
their secret shares to calculate a partial result; in 
this example, each partial result is one third of the 
necessary information to calculate the final answer. 
The partial results are then recombined, summing 
the complete set of secret shares previously 
distributed. Allie, Brian and Caroline’s average salary 
is US$200K.”11 

Standards in Privacy-Preserving Computation 
Techniques 
ISO/IEC 29101:2013 Information technology—
Security techniques—Privacy architecture framework, 
is “one of the oldest standards efforts that handles 
secure computing.”12 It presents architectural views 
for information systems that process personal data 
and shows how privacy-enhancing technologies, 
such as secure computing, pseudonymization and 
query restrictions, could be deployed to protect 
personally identifiable information (PII). 

ISO/IEC 19592-1:2016 Information technology—
Security techniques—Secret sharing—Part 1: General, 
focuses on “the general model of secret sharing 
and the related terminology.”13 It introduces 
properties that secret sharing schemes could have 
(e.g., the homomorphic property that is a key aspect 
for several SMPC systems). 

ISO/IEC 19592-2:2017 Information technology—
Security techniques—Secret sharing—Part 2: 
Fundamental mechanisms, “introduces specific 
schemes.”14 All schemes are systematically described 
using the terms and properties from part one.  

Homomorphic Encryption 
Homomorphic encryption (HE) plays a role in a 
family of privacy-preserving computation 
techniques (PPCT) that address and eliminate the 
classic compromise of sharing data while retaining 
privacy. HE expands the role of encryption by 
extending its scope from data at rest and data in 
transit to data in use (i.e., data being processed, 
viewed, updated). HE can better enable enterprises 
to leverage the services of third-party providers 
(typically but not restricted to the cloud) by reducing 
or eliminating privacy concerns. HE provides the 
ability to compute on data while the data are 
encrypted. This has enabled “industry and 
government to provide capabilities for outsourced 
computation securely.”15 

HE Applications 
HE enables private queries to a search engine—the 
user submits an encrypted query and the search 
engine computes an encrypted answer without 
exposing the query in the clear text. “It also enables 
searching on encrypted data—a user stores encrypted 
files on a remote file server and can later have the 

Figure 5—Example of Multiparty Computation: Average Salary

A=$100 50 30 20 50 30 20
B=$200 -80 100 180 -80 100 180
C=$300 0 350 -50 0 350 -50
    -30 480 150 $600 $200

Allie Brian Caroline Allie Brian Caroline Sum Average

Source: Adapted from Inpher, “What Is Secure Multiparty Computation?” https://www.inpher.io/technology/what-is-secure-multiparty-computation

“ HE PROVIDES THE ABILITY 
TO COMPUTE ON DATA 
WHILE THE DATA ARE 
ENCRYPTED. ”
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server retrieve only files that (when decrypted) satisfy 
some Boolean constraint, even though the server 
cannot decrypt the files on its own.”16 

Private Set Intersection 
Private set intersection (PSI) is a powerful 
cryptographic technique that enables two parties to 
compute the intersection of their data without 
exposing their raw data to the other party. PSI 
identifies common elements between data sets held 
by different parties (figure 6). This replaces simplistic 
approaches such as one-way hashing functions that 
are susceptible to dictionary attacks. Applications for 
PSI include identifying the overlap with potential data 
partners (i.e., Is there a large enough client base in 
common to be worthwhile to work together?) as well 
as aligning data sets with data partners in preparation 
for using MPC to train a machine learning model.17 

Differential Privacy 
Differential privacy is a form of field-level data 
masking designed such that data can be used for 
querying aggregate statistics while limiting the 
exposure of individuals’ specific information. This 
approach supports data-sharing scenarios and has 
the capability to process data in untrusted 
environments (figure 7). 

Differential privacy can be implemented in six 
different types of transformation algorithms that 
are suitable for different use cases (figure 8). They 
provide mathematical definitions of how the 
algorithms hide the presence or absence of any 
individual’s data in a data set. 

Example of Differential Privacy: Banking 
A bank wanted to broaden access to its data lake. 
Stakeholders found that “current approaches to de-
identify data such as masking, tokenization, and 
aggregation can leave data unprotected.”18 Current 
approaches to de-identifying data did not fulfill the 
compliance requirements and business needs, which 
led to several bank projects being stopped. The issue 
with these techniques is that they do not sufficiently 
protect the data without overly degrading data quality. 

This approach enables the creation of privacy-
protected data sets that retain their analytical value 
for data science and business applications. The 
solution automatically enforces the compliance 
policies before the data are consumed by data 
science and business teams from the data lake. The 
analytical quality of the data is preserved for 
machine learning purposes by using artificial 

Figure 7—Differential Privacy Data Flow
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Figure 6—Private Set Intersection

          ID Amount Spent (A)
345-237-5744 500
422-475-1552 513
901-488-9720 892
055-381-2751 200
334-718-8888 298

          ID Amount Spent (B)
901-488-9720 200
055-381-2751 298
934-718-8888 200
345-237-5744 713
422-475-1552 202

          ID Amount Spent (C)
855-381-2751 892
934-718-8888 200
345-237-5744 298
901-488-9720 100
055-381-2751 713

Source: Adapted from “A Privacy-Preserving Way to Find the Intersection of Two Datasets,” OpenMined, 29 April 2020, blog.openmined.org/private-set-intersection 
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intelligence (AI) and leveraging privacy models such 
as differential privacy and k-anonymity. 

Improved data access for teams increases the 
enterprise’s bottom line without adding excessive 
infrastructure costs while reducing the risk of 
consumer information exposure. 

K-Anonymity Model 
The k-anonymity model ensures that groups smaller 
than k individuals cannot be identified. Queries will 
return at least k number of records. K-anonymity is 
a formal privacy measurement model that ensures 
that for each identifier there is a corresponding 
equivalence class containing at least k records. 

L-diversity is an enhancement to K-anonymity for 
data sets with poor attribute variability. It is 
designed to protect against deterministic inference 
attempts by ensuring that each equivalence class 
has at least L well-represented values for each 
sensitive attribute. This variant of K-anonymity is 
subject to attacks, which have led to the 
development of T-closeness. T-closeness is an 
enhancement to L-diversity for data sets with 
attributes that are unevenly distributed, belong to a 
small range of values or are categorical.19 

Privacy-Preserving Search on Data 
Sensitive data that are encrypted on the local 
premises before outsourcing them to the cloud 
hinder searching on the encrypted data, which is of 
critical importance for many use cases. Searchable 
encryption techniques need to provide a balance 
between performance, privacy and functionality. 

Outsourcing Data That Are Confidential or Regulated 
A medical center that owns patients’ health records 
cannot outsource its data to a cloud that is vulnerable 
to attacks due to legal regulations. A law enforcement 
agency that keeps sensitive criminal records should 
hesitate to use cloud storage. One way to overcome 
this confidentiality problem is to encrypt data on the 
local premises before outsourcing them to the cloud. 
However, although this approach preserves data 
confidentiality, it hinders data processing.20 It is 
important to enable searching, which is of paramount 
importance, for outsourced data. 

Data Protection for Cloud 
Another example is of a data warehouse that 
analyzes encrypted data using built-in machine 
learning (ML) capabilities. Dremel technology21 is a 
scalable, interactive ad hoc query system for 
analyzing read-only nested data. 

Figure 8—Differential Privacy Models
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Data privacy is provided by tokenization or 
encryption of sensitive data fields throughout the 
life cycle of data in Hadoop. Privacy policies are 
managed on-premise or in the cloud (figure 9). 

Approaches to Searching Encrypted Data in the 
Cloud 
Searchable encryption techniques were studied in 
early 2000.22 Since then, much research has been 
done to understand different types of searchable 
encryption. Although the studied systems are 
different in their searching approaches, security level 
and performance, they share certain architectural 
similarities. There are several survey studies on 
different searchable encryption systems.23, 24 

Utilize an Index Structure 
“Searchable encryption systems commonly utilize 
an index structure to keep track of occurrences of 
keywords in documents.” The process of initializing 
this index takes keys from a collection of 
documents as inputs. Then it extracts keywords 
from the documents and inserts them into the  
index structure.25 

Figure 10 illustrates a build-index process that is 
used by the data owner to generate a secure and 
searchable structure that enables search over the 
encrypted data. An index structure is generally 
implemented in the form of a hash table, metadata 
(markup) or an inverted index where each unique 

Figure 10—Search of Encrypted Data in the Cloud
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Source: Adapted from Pham, H.; J. Woodworth; M. A. Salehi; “Survey on Secure Search Over Encrypted Data on the Cloud,” Concurrency and Computation, vol. 31, iss. 17, 
10 September 2019, https://onlinelibrary.wiley.com/doi/10.1002/cpe.5284 
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keyword is mapped to the document identifiers in 
which it appears. 

Expansion to the Keyword-Based Search 
One expansion to the keyword-based searchable 
encryption is to allow users to perform regular 
expression searches on encrypted data. A 
preliminary approach proposes to create all 
possible variations of a given regular expression.26 
For instance, for ab[a − z] query, it generates all 26 
possible search queries that are aba, abb, . . . , abz. 
This approach only works for simple regular 
expressions and is not scalable for those with high 
degrees of variability, e.g., a*b*. 

Fuzzy Keyword Search 
Fuzzy keyword search can allow searchable 
encryption systems to accept minor typographical 
errors, but it may not exactly cover the semantic 
perspective.  

Fuzzy keyword search greatly enhances 
system usability by returning the matching 
files when users’ searching inputs exactly 
match the predefined keywords or the 
closest possible matching files based on 
keyword similarity semantics, when exact 
match fails.27 

Different Security Levels in Search Techniques 
In semisecure searchable encryption systems, the 
index structure could be partially encrypted, and 
some information about the documents or the 
keywords can be leaked from the index structure. 
Fully secure searchable encryption systems do not 
trust any part of the system, except the client’s 
device. Also, the auxiliary index is properly secured 
and does not expose any plain text data to the server. 
Keywords in the index structure can be hashed.  

Somewhat secure searchable encryption 
systems in this category often deploy a 
trusted server (also known as a private 
cloud or a gateway) in between the third-
party server (e.g., public cloud) and the 
client device.28 

Cryptographically Protected Database Search 
Protected database search systems “cryptographically 
isolate the roles of reading from, writing to, and 
administering the database.29 This separation limits 
unnecessary administrator access and protects data in 
the case of system breaches.  

Design of such systems is a balancing act 
between security, functionality, performance 
and usability. This challenge is made more 
difficult by ongoing database specialization, 
as some users will want the functionality of 
[Structured Query Language] SQL, [not only 
Structured Query Language] NoSQL, or 
NewSQL databases. This database evolution 
will continue, and the protected search 
community should be able to quickly provide 
functionality consistent with newly invented 
databases.30 

Fuzzy Search Over Encrypted Data 
To meet both ends of security and searchability, 
search-supported encryption is proposed. However, 
many previous schemes suffer severe vulnerability 
when typos and semantic diversity exist in query 
requests. To overcome such flaws, higher error 
tolerance is always expected for search-supported 
encryption design, sometimes defined as “fuzzy 
search.” This approach introduces a new 
mechanism to map a natural language expression 
into a word-vector space. Compared with previous 
approaches, this “approach can work well for both 
accuracy and efficiency and will not hurt the 
fundamental security.”31 Figure 11 illustrates that 
searchable encryption approaches can be divided 
into three steps: 

Represent—Keywords are extracted from 1.
outsourced files or received queries and 
transferred into word-vectors, a combination  
of which builds the final representation of  
files or queries. 

Encrypt and index—Files and queries are both 2.
encrypted to enhance security. They are 
suggested to be encrypted in heterogeneous 
ways. The encryption algorithm and key are 
provided usually by data owners. With some data 
structure, encrypted files are organized and 
stored for indexing. 

Search—Users send queries and data holders 3.
perform some search algorithms on the query 
and stored encrypted data. Search consists of 
the calculation of relevance score and ranking by 
the score. The data user usually only asks for the 
top-k most relevant files with the query instead of 
all relevant files. 
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Bloom Data Search Filters 
In 1970, the Bloom filter technique was introduced 
for applications where the amount of source data 
would require an impractically large amount of 
memory if conventional error-free hashing 
techniques were applied. It is “a space-efficient 
probabilistic data structure”32 that is used to test 
whether an element is a member of a set. 

Popular databases use Bloom filters to perform 
Bloom searches of partitions for certain queries, for 
example, when joining a data dimension table with 
a large fact table. Figure 12 illustrates that false 
positive matches are possible but false negatives 

are not. Elements can be added to the set but not 
removed. The more items added, the larger the 
probability of false positives.  

Hybrid Cloud Considerations 
Organizations may be familiar with on-premises 
encryption and key management systems, so they 
often prefer consistence to leverage the same tool 
and skills across multiple clouds. Organizations 
often adopt a “best of breed” cloud approach. Some 
customers simply do not trust their vendors. A 
common concern is vendor lock-in, an inability to 
migrate to another cloud service provider.33 

Figure 12—False Positive Matches With Bloom Filters
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Figure 11—Search Over Encrypted Data
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Figure 13 illustrates the central management of 
privacy across clouds and on-premises. 

Conclusion 
Organizations are increasingly concerned about 
data privacy; however, new techniques make it 
possible to securely share data and protect the 
privacy of individuals. These techniques can allow 
searches on encrypted data in data lakes and the 
cloud without compromising data privacy and while 
still preserving the data’s analytical quality. 

Commonly implemented solutions do not provide 
strong protection from data theft and privacy 
disclosures. Encrypting data at rest is not sufficient 
to avoid data breaches. Different industries  
have already started taking advantage of new 
privacy-preserving techniques. New privacy-
preserving computing approaches are needed to 
help pursue new opportunities and find the right 
balance between privacy, security and compliance. 

HE efforts remain diverse and fragmented, and a 
lack of standardization inhibits consistency to 
create scale and simplify and standardize APIs and 
SDKs. HE technology must be abstracted and 
simplified by incorporating it into familiar developer 
languages, frameworks and platforms. 
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