

IoT Security for the *new* Multi-Access Edge

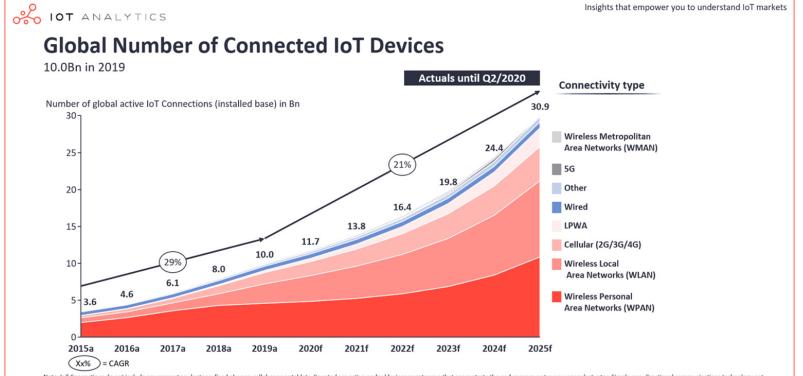
Invisible Threats. Visible Protection

Garry Drummond, CISSP, CWNA, CWSP Founder & CEO +1-510-703-6149 gdrummond@loch.io


Background

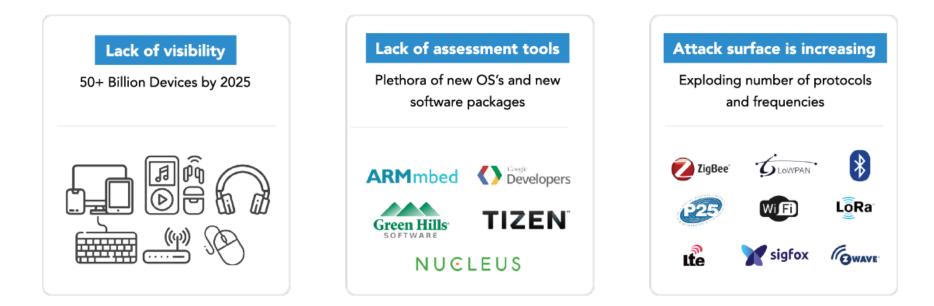
- Certified Information Security Professional (CISSP)
- Certified Wireless Security and Network Professional (CWNA/CWSP)
- Business owner and entrepreneur specializing in B2B technology
- Silicon Valley Startup of the Year in 2015 Silicon Valley Company of the Year in 2016 In 2017 Most innovative CEO of the Year
- I hold 5 patents for IoT security
- June 2021 Gartner Cool Vendor for Edge Computing

The Internet of Things (IoT) has created the world's largest attack surface



- Everything now connects to something, or someone
- 80% of IoT is wireless, wireless is now the new network and new attack surface

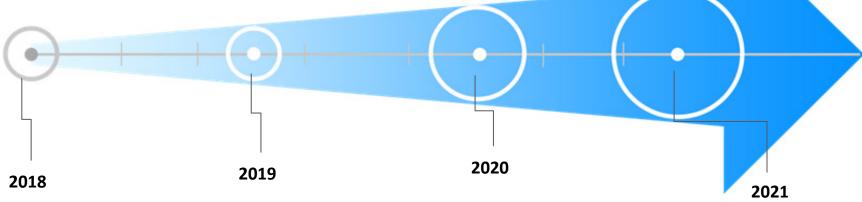
Connected IoT Devices



Note: IoT Connections do not include any computers, laptops, fixed phones, cellphones or tablets. Counted are active nodes/devices or gateways that concentrate the end-sensors, not every sensor/actuator. Simple one-directional communications technology not considered (e.g., RFID, NFC). Wired includes Ethernet and Fieldbuses (e.g., connected industrial PLCs or I/O modules); Cellular includes 2G, 3G, 4G; LPWAN includes unlicensed and licensed low-power networks; WPAN includes Bluetooth, Zigbee, Z-Wave or similar; WLAN includes Wi-fi and related protocols; WMAN includes non-short range mesh, such as Wi-SUN; Other includes satellite and unclassified proprietary networks with any range. Source(s): 10 Tankitics - Cellular IoT & LIWA Connectivity Market Tracker 2010-25

Wireless Is The New Attack Surface

By 2023, 75% of organizations will be forced to restructure risk and security governance to address the convergence of IT and IoT security needs.


The speed at which IoT is being exploited requires new vigilance

25 Billion IoT online

57% of IoT is vulnerable to

can lead to data exfiltration

high impact attacks that

 83% of IoT run on unsupported operating systems

- 50 Billion IoT online
 - IoT attacks every 1 min
 - Cost of Breach \$2.7M

- IoT attacks every 3 secs
- Cost of Breach \$5.8M
- More attacks in 1H/21 than in all of 2020
- 98% of IoT traffic is unencrypted

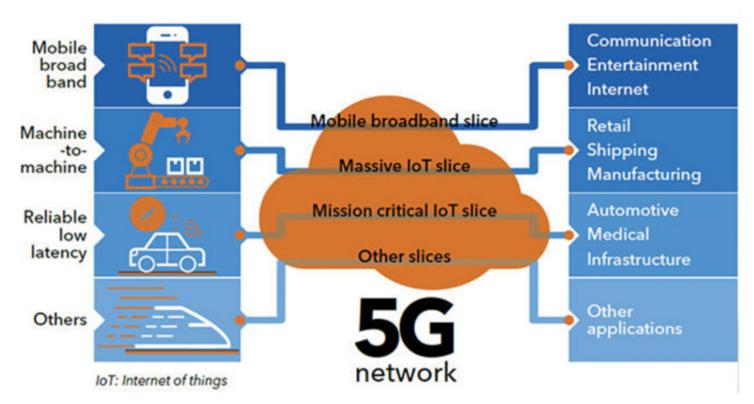
IoT Device Security at the Edge Poses Unique Challenges

loT World Today

May 7th 2021

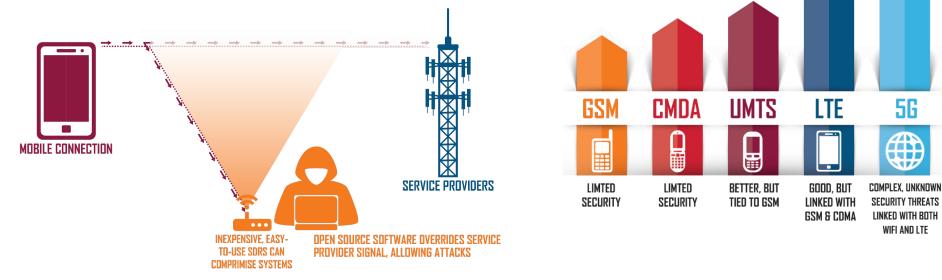
IoT practitioners need to adapt traditional methods to ensure IoT device security at the edge

https://www.iotworldtoday.com/2021/05/07/iot-device-security-at-the-edge-poses-unique-challenges/?lssue=IOT-001UBER_20210518_IOT-001UBER_565&sfvc4enews=42&cl=article_1&utm_rid=CPNET000011857520&utm_campaign=37803&utm_medium=email&elq2=fe47e74d158441c3b9d57904a34aa12


The Promise of 5G?

- Low Latency allows for the enablement of new edge applications (microservices)
- Higher Bandwidth = faster download speeds
- Ubiquitous Internet Access indoor and outdoor (Hybrid plans combine WiFi & Cellular)
- Better Security PKI
- Competitive Advantage -lower cost

5G Network Slicing



A New Architecture = New Security Issues

Identifying and Preventing Cellular Attacks

- Cellular denial-of-service (DOS)
- Insertion of malware/virus/ransomware into cellular devices
- Exploiting smartphones as a bridge to sensitive corp infrastructure
- Malicious location tracking

 $chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://www.etsi.org/deliver/etsi_TS/133500_133599/133501/15.01.00_60/ts_133501v150100p.pdf$

Is 6Ghz Wi-Fi (802.11ax) the new 5G?

	() Wearables	Home	Phone
Range (typical)	<10m/30ft	<100m/300ft	Outdoor (Km/miles)
Content	🛞 Bluetooth	Wi 🗐 ®	Lite 5a
Sense & control	Bluetooth	💋 zigbee	NB-IoT
Typical applications	Personal appliances (wristband, smart watch, step counter, keyboard, mouse, pointer, etc.)	Indoor networks (Internet, email, phone, security, energy management, home monitoring, etc.)	Outdoor networks (phone, chat, Internet, smart city, industry 4.0, agriculture, smart logistics, etc.)

The Problem

"C'mon, c'mon — It's either one or the other."

Wireless Attacks

PREVENT CELLULAR ACCESS - As wireless devices may have cellular access, an attacker may want to ensure cellular access is unavailable while performing WiFi attacks — in doing so they create fake cell towers and deny authentication to the network.

DOWNGRADE CELLULAR NETWORK - Attacks against weaker cellular networks require disabling more secure networks allowing for man in the middle attacks to take place, installing Trojans.

EVIL TWIN AP - Attacker creates an Access Point and draws devices towards it through a higher signal power and/or existing network using deauthentication. Connected devices may expose credentials or be directed to malicious services, compromising the system.

WEAK AUTHORIZATION - An at-home network used by remote office staff may have WiFi Protected Setup (WPS) enabled. The access codes to many devices are well known or easily brute force allowing the attacker access to the network

WEAK ENCRYPTION – wireless networks may not follow strong and required network security practices by using common/easily recovered WPA/WPA2 passphrases, unencrypted or known weak-ciphered networks

ROGUE DEVICES - A rogue device, such as a spy camera, wireless-enabled USB drive, or an open printer may put the network at risk

Cellular Attacks

UE/Device Threats

Malware, Firmware Hacks, Senor Compromise. IoT, TFTP MitM Attacks, Bots DDos, Device Tampering

Air Interface Attacks

MitM Attacks, Rogue communication lead to data exfiltration, Jamming

SIM Port Hijack / SIM Swapping Loss of control over your SIM

connectivity

DOWNGRADE CELLULAR NETWORK

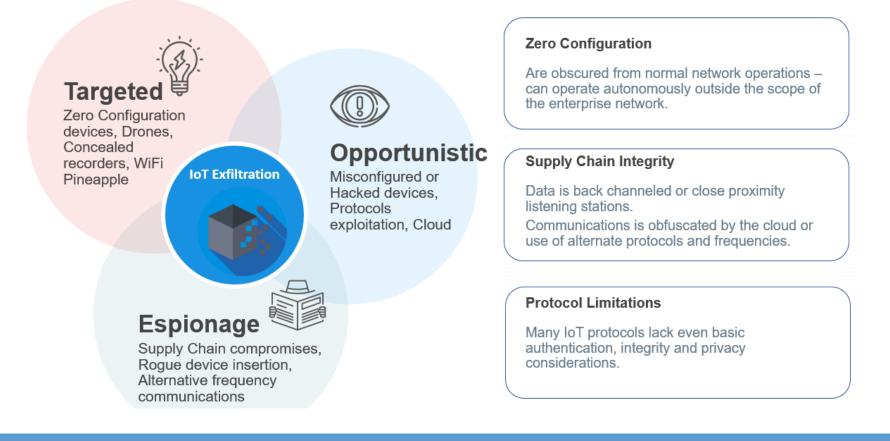
Allowing for man in the middle attacks to take place, installing Trojans.

RAN Threats

MEC Server Vulnerabilities, Rogue Nodes, Malware, DDoS and BOTNETs

Rogue Cell Tower Detection

SIM devices connecting to an evil-twin cell tower. Steal credentials and data

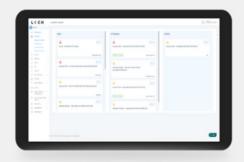

Roaming

Increases data usage and excessive billing costs. Enforce no unauthorized roaming

IoT Exfiltration Methods

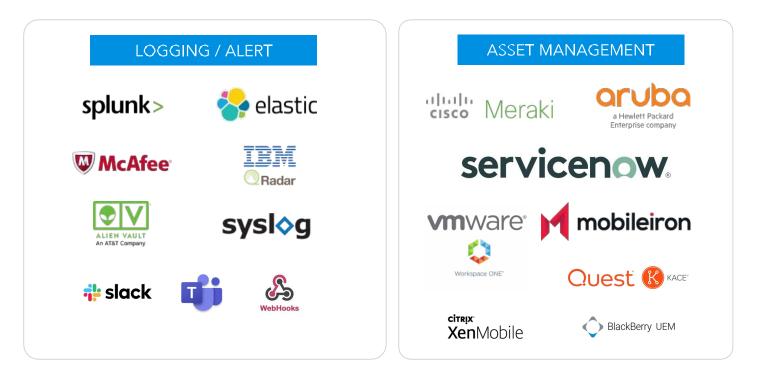
Zero Trust Framework

	18-1-16 (1997) Totals								0.0
	-		- 28	7,1	-		-		418308
1E 1	1		20	- 0		10341	-	A.	1949
-	-						-		18. 1
									-
1.000	-	- 9419				Apr. 104	- 1000 MI	Analysis of	-
	denie	Records.			-	h 21			
1 Automatica 1	10000	and a				A	-		1000
* 10.00	CONTROL	Read of				1.1		-	-
8 100000	-	Read of				1 A			-
:= :	Canada a	ALC: N		C. PROPERTY.			-		-
	1000	Processil.					10	-	-
	10000	Processo i		-	-	100			-
	10000	Protection of		Constant of					-
		-		1000		_		_	-

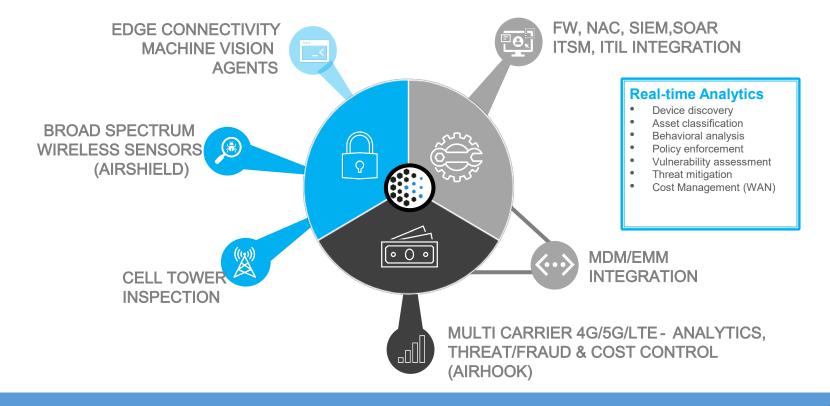

- Detect, identify & classify all broad spectrum RF emitting devices in range
- Device and network pairing communication map analysis and correlation
- Risk assessment threat ranking for zero trust network access control
- Mobile App for hunting rogues even if mobile

LCCH	les .	0.0
1111.111		Human
	10 0 1 1 1 1 1 1 2 1 1 1 4 1 1 1 4 1 1 1 4 1 1 1 4 1 1 1 4 1 1 1 4 1 1 1 4 1 1 1 4 1 1 1	
	Memory Engl Mercell And Coll and C	

- Wireless deep packet inspection
- Behavioral baselining, analysis and anomaly detection/alerts
- DVR-like capabilities for forensics, including geo-positioning
- Carrier integration with cellular devices for anomaly detection, fraud/theft and cost management



- List & map devices on dashboard or directly into SIEMs.
- Interact with MDM & EMM assets for correlation & feedback on exceptions
- Rectify network segmentation via interactions with SOAR, FW and/or NAC systems
- Automate response & closure via collaboration with ITSM/ITSL & CMDBs


API Integrations

Wireless Machine Vision - See Everything

The Evolution of Security in 5G - <u>https://www.5gamericas.org/wp-content/uploads/2019/08/5G-Security-</u> White-Paper 8.15.pdf

What is 5G by Qualcomm Dr. Jon Smee -<u>https://www.qualcomm.com/news/onq/2017/01/16/what-5g-101-seconds-dr-john-smee</u>

Comparing WiFI 6 to 5G - https://www.intel.com/content/www/us/en/wireless-network/5g-technology/5g-vs-wifi.html

Thank You

Garry Drummond, CISSP, CWNA, CWSP CEO 510-703-6149 gdrummond@loch.io