Mobile Device Security

Pen testing and Ethical Hacking Lee Neely, CISSP, CISA, CISM, CRISC, CCUV, GMOB

Overview

- Mobile Devices are prevalent
- Security models are different by platform
- Analysis of Mobile Device Applications
- Analysis of Mobile Device Ecosystem

Mobile Devices are everywhere

- Resistance is futile! If management blocks them, users will find a way
 - Don't be the problem your users solve
- It is important to understand how they are being used
 - Where is the data?
- It is important to understand the major device architecture and security
 - ► How is your information accessible?
 - How can your protections be circumvented?
- Based on that knowledge, coupled with your information protection requirements, you can start to assess.

Mobile Device Security

- IOS Security
- Hardware Encrypted with passcode
- Up to 4 year device support
- No MO value added software. OS updates directly from Apple
- Applications only installed iTunes App store
- Applications announce optional security settings

- Android Security
- Hardware Encryption inconsistent
- Devices supported 6-12 months.
 - Handset alliance suggest 18 months
- MO value add and testing delay OS updates
- By Default Applications installed from Google Play only, can add multiple sources.
- Applications announce security settings
 - All or nothing

Analysis of Mobile Devices

- Need to understand network connections and security
- Illegal to intercept/manipulate 3G/4G/LTE networks
- Must assume Wi-Fi network connections/behavior identical to Cellular network
- Need to be MiTM with the mobile device
 - Configure Proxy
 - ► ARP Posoining
 - ► AVD Emulator

Application Analysis

- IOS Applications
- Written in Objective C
- Encrypted
- Multiple hardware architecture in single application binary
- Need GDB to extract binary from memory
- Very difficult to change and repackage without source.

- Android Applications
- Written in Java
- .APK file is compressed (Zipped) Java
 - Runs in Dalvik interpreter
- Can Decompile into Java for analysis
- Can Decompile into Smali (Dalvik bytecode) for alteration
- Altered code can be assembled and distributed as the original package

iOS Decompilation/Manipulation

- Obtain unencrypted binary
 - Use Otool and GDB on JB iPhone
 - Use Rasticrac on JB iPhone
- Thin application to current architecture
 - Use lipo on OSX with Xcode installed to extract desired binary. E.g. ARMv7
 - Use class-dump-z to extract class files, headers pretty accurate
 - Otool for review of shared libraries
- Cannot recreate (modified) app

- Runtime Manipulation
- Connect to running app with Cycript
 - Cycript sits on Cydia Substrate
 - Manipulate application in memory
 - Dynamically access methods and variables
 - Is a testing/developer tool

Android Decompilation/Manipulation

- Use Apktool to decompile into SMALI interpreter
 - Apktool d helloworld.apk
- Use text editor for small changes
 - E.g. Hello World becomes Hello Joe!
- Use Eclipse for larger changes
 - E.g. New functionality
- Reassemble with apktool
 - Apktool b helloworld.apk
 - Must sign before usable

- Digitally sign the new APK
 - Create signature
 - Jdk\jdk-ver\bin\keytool.exe -genkey keystore keys/helloworld.keystore alias HelloWorld -keyalg RSA -validity 10000
 - Create values when prompted
 - Sign APK
 - Jdk\jdk-ver\bin\jarsigner.exe keystore keys\helloworld.keystore helloworld\dist\helloworld\HelloWorld
 - Signature not checked by Android; can deploy many ways

Mobile Device Ecosystem

- Lots of services used when mobile
 - Devices
 - Web servers
 - Mobile path may be less secure
 - FB mobile used to use http://m.facebook.com rather than https://...
 - Desktops
 - Mobile applications
 - Mobile sharing/syncing
 - DropBox
 - Google Drive
 - ► Etc.

- Analysis of Mobile device risks and threats are complex and require flexibility
- Devices accessing, processing and storing data outside your traditional boundaries
- Pentesting tricky as multiple factors involved, and you may not have or be able to get permission to pentest all of them

Mobile Device Pen Testing is complex

- Mobile Device Pen Testing building blocks:
 - Network pen testing
 - Wireless pen testing
 - Web pen testing
- Diversity of environment drives flexibility
- New tools emerging to help
- Old tools packaged to help
 - PWN Pad/Phone/PI

Pen Testing Mobile Applications

- Understand the application
 - Some are really a web site
 - Many are simply web pages rendered in an application
 - > Others really are an application
- Questions to ask
 - Where is the data
 - How is it protected
 - How is access governed
 - Who owns what
 - Do you have a backup and can you restore it

- Once you know these, now go prove, or disprove
- What happens when you intercept and change parameters
 - Session timeout, cryptographic or other checks may thwart
- Can you replay transactions
 - Message Integrity Check may not prevent this
 - Transaction serialization helps
- Are apps susceptible to XSS
- Are apps susceptible to SQL Injection

Staying Current

- Field constantly changing
 - New devices
 - Constant OS Updates
 - New features = new vulnerabilities
- Get plugged into Security Data Feeds
 - ► US-CERT
 - ► Twitter:
 - ▶ ios security
 - android security

- Try your own hand pen testing known vulnerable apps
- CarnalOwnage Vulnerabile Android Apps
 - http://carnal0wnage.attackresearc h.com/2013/08/want-to-breaksome-android-apps.html

Questions?

Lee Neely CISSP, CISA, CISM, CRISC, CCUV, OMBUDS lkn@omp.net